Single Source Shortest Paths
기본 프로시저
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 | const int NIL = 0;
const int INF = 100000000;
int predecessor_subgraph[MAX];//직전원소 그래프 v.pi
void PRINT_PATH(int s, int v)
{
if (v == s)
;
/*else if (predecessor_subgraph[v] == 0) //최단경로 v가 보장되어있고 start가 0일때는 해당 주석을 뗀다
{
return;
}*/
else
PRINT_PATH(s, predecessor_subgraph[v]);
cout << v << ' ';
}
|
- 2차 vector G
- s 정점으로부터 출발
- distance는 정점 s로부터의 거리
| void INITIALIZE_SINGLE_SOURCE(const Graph& G,
std::vector<int>& Distance, int s)
{
for (std::size_t i = 1; i < G.size(); i++)
{
Distance[i] = INF;
}
Distance[s] = 0;
}
|
완화에서 다음 프로시저를 실행하고 하면된다.
predecessor_subgraph[v] = u;
24.1 BELLMAN FORD
| void BF_RELAX(int u, int v, int w, std::vector<int>& Distance)
{
if ((Distance[u] != INF) && Distance[v] > Distance[u] + w)
{
Distance[v] = Distance[u] + w;
//predecessor_subgraph[v] = u;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32 | bool BELLMAN_FORD(const Graph& G,
std::vector<std::vector<int>>& W,
std::vector<int> &Distance, int s)
{
INITIALIZE_SINGLE_SOURCE(G, Distance, s);
const std::size_t n = G.size() - 1;
for (std::size_t i = 1; i <= n; i++)// 간선 u v w = G[v][]
{
for (std::size_t u = 0; u <= n; u++)
{
for(int v : G[u])
{
int w = W[u][v];
BF_RELAX(u, v, w, Distance);
}
}
}
for (std::size_t u = 1; u <= n ; u++)
{
for (int v : G[u])
{
if ((Distance[v] > Distance[u] + W[u][v]) && Distance[u] != INF)
{
Distance[v] = -1;
return false;
}
}
}
return true;
}
|
24.2 Single-source shortest paths in directed acyclic graphs
| W[1][2] = 5;
W[2][3] = 2;
W[2][4] = 6;
W[3][4] = 7;
W[3][5] = 4;
W[3][6] = 2;
W[4][5] = -1;
W[4][6] = 1;
W[5][6] = -2;
|
$\Theta(V+E)$
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67 | void DFS_TS(const Graph& G, std::vector<bool> &visit,
stack<int> &S, int x)
{
visit[x] = true;
//std::cout << x << ' '; // 순회출력
for (int next : G[x])
{
if (visit[next] != true)
{
DFS_TS(G,visit,S,next);
}
}
S.push(x);
}
std::stack<int> topologicalsort(const Graph& G)
{
const int n = G.size();
std::vector<bool> visit;
visit.resize(n);
stack<int> S; // 실제 정렬된값이 역순으로 들어가있다.
for (std::size_t i = 1; i < n; i++)
{
if (visit[i] != true)
{
DFS_TS(G,visit,S, i);
}
}
return S;
}
void INITIALIZE_SINGLE_SOURCE(const Graph& G,
std::vector<int>& Distance, int s)
{
std::fill(Distance.begin(), Distance.begin() + Graph.size(), INF);
Distance[s] = 0;
}
void RELAX(int u, int v, int w, std::vector<int>& Distance)
{
if (Distance[v] > Distance[u] + w)
{
Distance[v] = Distance[u] + w;
//predecessor_subgraph[v] = u;
}
}
void DAG_SHORTEST_PATHS(const Graph& G,
std::vector<std::vector<int>>& W,
std::vector<int>& Distance, int s)
{
std::stack<int> S = topologicalsort(G);
INITIALIZE_SINGLE_SOURCE(G, Distance, s);
while(!S.empty())
{
int u =S.top();
S.pop();
for (int v : G[u])
{
RELAX(u, v, W[u][v], Distance);
}
}
}
|
24.3 Dijkstra's algorithm
참고:
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#Running_time
우선순위큐 사용 $O(E\log V)$
PQ의 탑 디스턴스값을 갱신시켜야한다 따라서 뽑고 다시넣는다.
책의 의사코드에 치명적인 문제가 하나있는데
완화에서 Q.decrease_priority로 key 거리값을 갱신 시켜줘야한다.
1
2
3
4
5
6
7
8
9
10
11
12
13 | void DIJK_RELAX(int u, int v, int w, std::vector<int >& Distance,
std::priority_queue<
std::pair<int, int>,
std::vector<std::pair<int, int>>,
std::greater<std::pair<int, int>>>& PQ)
{
if ((Distance[u] != INF) && (Distance[v] > Distance[u] + w))
{
Distance[v] = Distance[u] + w;
//predecessor_subgraph[v] = u;
PQ.push(std::make_pair(Distance[v], v));
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | void DIJKSTRA(const Graph& G,
std::vector<std::vector<int>>& W,
std::vector<int> &Distance, int s)
{
INITIALIZE_SINGLE_SOURCE(G,Distance, s );
std::priority_queue<std::pair<int, int>, std::vector<std::pair<int, int>>, std::greater<std::pair<int, int>> > PQ; //정점의 거리, 정점
for (std::size_t i = 1; i < G.size(); i++)
{
PQ.push(std::make_pair(Distance[i], i));
}
while (!PQ.empty())
{
int u = PQ.top().second;
PQ.pop();
for (int v : G[u])
{
DIJK_RELAX(u, v, W[u][v], Distance,PQ);
}
}
}
|