26 Maximum Flow
26.1 Flow networks
26.2 The Ford-Fulkerson method
Edmonds Karp $O(VE^2)$
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 | constexpr long long INF = 0x7FFF'FFFF;// 'FFFF'FFFF; constexpr int MAX_V = 1002; std::vector<int> adj[MAX_V]; int c[MAX_V][MAX_V]; int f[MAX_V][MAX_V]; int p[MAX_V]; bool findAugmentingPathBFS(const int S, const int T) { fill(p, p + MAX_V, -1); queue<int> Q; Q.push(S); while (!Q.empty() && p[T] == -1) { int curr = Q.front(); Q.pop(); if (curr == T) break; for (int next : adj[curr]) { if (c[curr][next] - f[curr][next] > 0 && p[next] == -1) { Q.push(next); p[next] = curr; } } } return (p[T] != -1); } int Edmonds_Karp(const int S, const int T) { int maxFlow = 0; while (findAugmentingPathBFS(S, T)) { int c_f_p = INF; for (int i = T; i != S; i = p[i]) c_f_p = min(c_f_p, c[p[i]][i] - f[p[i]][i]); for (int i = T; i != S; i = p[i]) { f[p[i]][i] += c_f_p; f[i][p[i]] -= c_f_p; } maxFlow += c_f_p; } return maxFlow; } |