차례
차례...................................... 1
1 GRAPHS AND SUBGRAPHS . . . . . . . . . . . . . . . . . . . . . 2
1.1 Graphs and simple Graphs . . . . . . . . . . . . . . . . . . . . 2
1.2 GraphIsomorphism........................ 2
1.3 The Incidence and Adjacency Matrices . . . . . . . . . . . . . 5
1.4 Subgraphs ............................. 6
1.5 VertexDegrees........................... 6
1.6 Paths and Connection . . . . . . . . . . . . . . . . . . . . . . 9
1.7 Cycles ............................... 11
1.8 The Shortest Path Problem . . . . . . . . . . . . . . . . . . . 11
1.9 Sperner’sLemma.......................... 13
2 Tree.................................... 15
2.1 Trees ................................ 15
2.2 Cut Edges and Bonds . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 CutVertexes............................ 19
2.4 Cayley’sFormula ......................... 20
2.5 THE CONNECfOR PROBLEM . . . . . . . . . . . . . . . . . 21
3 Connectivity ............................... 22
3.1 Connectivity............................ 22
3.2 BLOCKS.............................. 23
4 Euler Tours and Hamilton Cycles . . . . . . . . . . . . . . . . . . . 24
4.1 EulerTours ............................ 24
4.2 HAMILTONCYCLES ...................... 24
5 Matchings ................................ 25
5.1 Matchings ............................. 25
1