...................................... 1
1 GRAPHS AND SUBGRAPHS . . . . . . . . . . . . . . . . . . . . . 2
1.1 Graphs and simple Graphs . . . . . . . . . . . . . . . . . . . . 2
1.2 GraphIsomorphism........................ 2
1.3 The Incidence and Adjacency Matrices . . . . . . . . . . . . . 5
1.4 Subgraphs ............................. 6
1.5 VertexDegrees........................... 6
1.6 Paths and Connection . . . . . . . . . . . . . . . . . . . . . . 9
1.7 Cycles ............................... 11
1.8 The Shortest Path Problem . . . . . . . . . . . . . . . . . . . 11
1.9 SpernersLemma.......................... 13
2 Tree.................................... 15
2.1 Trees ................................ 15
2.2 Cut Edges and Bonds . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 CutVertexes............................ 19
2.4 CayleysFormula ......................... 20
2.5 THE CONNECfOR PROBLEM . . . . . . . . . . . . . . . . . 21
3 Connectivity ............................... 22
3.1 Connectivity............................ 22
3.2 BLOCKS.............................. 23
4 Euler Tours and Hamilton Cycles . . . . . . . . . . . . . . . . . . . 24
4.1 EulerTours ............................ 24
4.2 HAMILTONCYCLES ...................... 24
5 Matchings ................................ 25
5.1 Matchings ............................. 25
1
1 GRAPHS AND SUBGRAPHS
1.1 Graphs and simple Graphs
1.1 (Graph) 정점정점 .
V(G) : 정점
E(G) :
ψG(en) : (en)정점
ν(G) : 정점
ε(G) :
plannar graph.
plannar graphnonplanar graph.
정점trivial graph.non-
trivial .
loop : . link : .
Simple graph : loop정점
incident : 정점 adjacent : 정점
1.2 Graph Isomorphism
1.2 (isomophic) GHθ:V(G) V(H)
ϕ:E(G)E(H)(isomophic).음이
.
ψ(e) = us(eE(G), u, s V(G))
ψ(ϕ(e)) = θ(u)θ(v)
2
1.3 (a special classes of graphs)
complete graph() : 정점정점
nKn.
empty graph : 정점개고
bipartite graph() : 정점
complete bipartite graph() : 정점각각
정점 정점 각각 m
nKm,n.
(1.2.9)k-partite graph : 정점k부분
부분
부분정점. ()a complete k-partite
graph is one that is simple and in which each vertex is joined to every
vertex that is not in the same subset
(1.2.9)complete k-partite graph : k-partite graph정점
정점
()complete k-partite graph is one that is simple and in which each
vertex is joined to every vertex that is not in the same subset.
(1.2.10)k -cube : 정점ordered k-tuple(k-),
정점1정점 .
(1.2.11)(complement graph) : 정점함하
,Gc
.
(1.2.11)(self-complementary graph) :
week1
3
1.2.1
1.2.2
1.2.3
1.2.4
1.2.5
G
=H, simple
bijection θ:V(G) V(H)uv E(G)θ(u)θ(v)E(H)
ψ(e) = use(eE(G))ψ(ϕ(e)) =
θ(u)θ(v)ϕ(e)(ϕ(e)E(H)).uv E(G)
θ(u)θ(v)E(H),.
1.2.6
1.2.7
1.2.8
1.2.9
n
2(m(k+ 1) n)k
2(nmk)k+ 1
2(1)
=n
2m(k+ 1)k
2nk
2(nmk)k+ 1
2(2)
=n
2m(k1)k+ 1
2+nk
2(nmk)k+ 1
2(3)
=n
2+nk
2(nm)k+ 1
2(4)
=n
2+nk
2(nm)k+ 1
2+ (n1)k+ 1
2(n1)k+ 1
2
(5)
=n
2+nk
2(n1)k+ 1
2+ (m1)k+ 1
2(6)
=n2nnk +k2+knk
2+ (m1)k+ 1
2(7)
=(nk)(nk1)
2=nk
2+ (m1)k+ 1
2(8)
4
1.2.10
1.2.11
(a):
Kc
n:.
Kc
n,m :이의 각각 subgraph
.
(b):
v(v1)
2이자
+니다.=
vv1(4
니다) 4여야니다 v(mod 4)01
:
:,uvθ(u)θ(v)
.
GHG정점H정점
fGH(iso-
morphic).
Proof: E(G) 임의의 e임의의 정점 u, v,
θ(u)θ(v).θ(u)θ(v)
eϕ(e) = eϕ:E(G) E(H).
GH.
week2
1.3 The Incidence and Adjacency Matrices
()
5
1.4 Subgraphs
1.4 (subgraph) H,GV(H)V(G), E(H)E(G), and ψH
is restricton ψG
aHGH(G)subgraph(supergraph).
HG,H=GHG,HGproper graph.
V(H) = V(G), H GH(G)spaning subgraph(supergraph)
.
spaning subgraphsimple graph, undelying simple graph
.
GvV, d(v) = k,k-regular.
(complete bipartite graphs Kn,n), k-cube.
aψHψG.
1.5 Vertex Degrees
1.5 (degree()) dG(v)정점 v .
정점δ(G) , ∆(G).
X
vV
d(v)=2ε
k-regular graph(규그) : d(v) = kvV|A|:A
Theorem 1.1.
X
vV
d(v)=2ε
Proof. M정점있으
정점.X
vV
d(v)2ε
.1.3.1(a)2.
Corollary 1.1.1. 정점.
Proof. V1,V2정점,
X
vV1
d(v) + X
vV2
d(v) = X
vV
d(v)
6
.X
vV2
d(v)X
vV1
d(v).|V1|
.
1.5.1
1.5.2
M’MMT,MM[vi][vi] =
n
X
j=1
M[vi][ej]·M[ej][vi]
M[ej][vi] = M[vi][ej]simple graph 01
결과정점.
AA[vi][vj] = A[vj][vi]
d(i) =
n
X
j=1
A[vi][vj] =
n
X
j=1
A[vj][vi].simple graphA[vi][vj]
01A[vi][vj]·A[vj][vi] = A[vi][vj].
A2A2[vi][vi] =
n
X
j=1
A[vi][vj]·A[vj][vi] =
n
X
j=1
A[vi][vj] = d(i)
1.5.3
k-regular bipartite graphbipartition(X,Y)|X| =|Y|.d(v) = |Y|, d(u) =
|X|(vX, u Y)d(v)=d(u)k-regular graph
1.5.4
(
) 있음을
nn-1
.
각각정점,구관simple
graph있으정점.
simple graph정점 음을
것과 .
1.5.5
G정점 v1, v2, ..., vn(d(v1), d(v2), ..., d(vn)) G
(degrees sequence).
7
음이 퀀(d1, d2, ..., dn) 퀀임이
n
X
i=1
di임을 .
2ε임이 T heorem1.1.
.
If G has vertices (v1, v2, ..., vn) the sequence (d(vl), d(v2), ..., d(vn)) is called
a degree sequence of G. Show that a sequence (d1, d2, ..., dn) of non-negative
integers is a degree sequence of some n graph if and only if
n
X
i=1
diis even
1.5.6
A sequence d= (d1, d2, ..., dn) is graphic if there is a simple graph with degree
sequence d. Show that
(a) (7,6,5,4,3,3,2) : 정점7정점7simple
graph. (6,6,5,4,3,3,1) : 7정점
정점 6정점21정점
있으simple graph임이 .
(b) if dis graphic and d1d2... dn, then
n
X
i=1
diis even and
k
X
i=l
di
k(k1) +
n
X
i=k+1
min(k, di) for 1 kn
d1d2... dn,
n
X
i=1
di
것과 음이
k
X
i=1
dik(k1) +
n
X
i=k+1
min(k, di) for
1kn
d수수d2ε.
1.5.7
1.5.8
1.5.9
1.5.10
The edge graph of a graph G is the graph with vertex set E(G) in which two
vertices are joined if and only if they are adjacent edges in G.
8
Show that, if G is simple (a) the edge graph of G has e(G) vertices and
L (d2 (V)) edges; vEVlG) . (b) the edge graph of Ks is isomorphic to the
complement of the graph featured in exercise 1.2.6.
GE (G)
G 니다.
1.6 Paths and Connection
1.6 (walk) 정점,walk.
v0e1v1e2v2...ekvkwalkv0to vk(v0,vk)-walk.
walktrail.
simple graph Gtrailε(W).
정점walkpath
G정점 u,v(u,v)-path, connected graph
.
정점부분 각각,
부분 Gcomponent.
Gcomponetω(G).
1.6.1
(u,v)-walk정점walk
(u,v)-path.
1.6.2
????
1.6.3
정점정점δklenthkpath
k정점path.
9
1.6.4
????
1.6.5
(a) : 정점,정점
ε1정점ε1
2
정점
connected.
(b) : 정점 ε1정점ε1
2
정점disconnected
.
1.6.6
1.6.7
1.6.8
(a)ecomponentcomponent
.ω(G)ω(Ge)ω(G)+1.
(b) inequality: :V(G) = v1, v2, v3, E(G) = e1, e2, ψH(e1) =
v1v1, ψH(e2) = v2v3v1v2v3 각각 ω(G) = 2v1
component.
1.6.9
1.6.10
1.6.11
1.6.12
1.6.13
1.6.14
uv, uw, uw EGcompleteuw /E
10
1.7 Cycles
1.7 (cycle) walk이이
(closed).
일을 cycle.
Theorem 1.2. 것과 지지
.
Proof.
1.7.1
1.7.2
simple graph함하v0v0.
임의의 정점v0, v12v0v1v0
simple graph정점k.v0v1v2...vi
정점v0vi
0jk정점 vj 어야.
vjvj+1...vk .
1.7.3
1.7.4
1.7.5
week 3
1.8 The Shortest Path Problem
(Dijkstra’s Algorithm)
11
1.8.1
1.8.2
1.8.3
1.8.4
1.8.5
.
로로.
1. (8,0,0) 2,3
2. (3,5,0) 1,4,5
3. (5,0,3) 1,4,6
4. (0,5,3) 2,3,5
5. (3,2,3) 2,4,7
6. (5,3,0) 3, 8
7. (6,2,0) 5,9
8. (2,3,3) 6
9. (6,0,2) 7,10
10. (1,5,2) 9,11
11. (1,4,3) 10,12
12. (4,4,0) 11,13,14
13. (4,1,3) 12
14. (1,4,3) 12
1257910 11 12
12
1.8.6
1.9 Sperner’s Lemma.
2T작은
갠것
(be simplicial).
정점음이
, 0,1,2 (labelling)적절(be proper).
1: (a) Asimplicial subdivision of a triangle (b) a proper labelling of the
subdivision
T정점0,1,2는다.
T정점 이의 정점T정점
.
정점0,1,2.
Theorem 1.3 (Sperner’s lemma).적절(properly labelled)
(simplicial) 갠것.
Proof. TT0.T1, T2, ..., Tn. 0
1각각 TiTj vi,vj정점
{v0, v1, ..., vn}.(정점T.)
13
v0.(1.9.1) v1, v2, ..., vn
개가 .
정점1.vi1임은 Ti
.
1.9.1
경계 이의 정점n.정점
.01v01.경계 이의 정점N
v0임이 N+ 1N정점
정점.
01
00
10
11
10, 0 11100.
110+21
. 00100101
101
.N+ 1임이
v0.
14
week 4
2 Tree
2.1 Trees
2.1 (tree) connected acyclic graph
acyclic graph(forest) :
Theorem 2.1. 정점유일.
Proof.
Theorem 2.2. Gϵ=ν1
Proof.
Corollary 2.2.1. 정점개가 (nontrivial tree)
1.
2.1.1
2.1.2
2.1.3
2.1.4
2.1.5
Let 0 be a graph with v-I edges. Show that the following three statements are
equivalent: (a) G is connected; (b) G is acyclic; (c) G is a tree.
acyclic graphtree임이 ν1
, acyclic graphconnected것과 connected graphacyclic
임이 임을 .
acyclic connected graph
acyclicconnected graph .
componentconnected graph.component
v(G1)1 + v(G2)1 + ... +v(Gn)1=v(G)1
.
connected graph acyclic
15
acyclic graphcycle
acyclic .ν1n=ν1
.
2.1.6
2.1.7
2.1.8
A centre of G is a vertex u such that max d(u, v) is as small as possible.
Show that a tree has either exactly one centre or two, adj acent, centres.
Gd(u, v) 작은 u.
있음을
2.2 Cut Edges and Bonds
2.2 (cut edge) Gω(Ge)> ω(G)e
(a cut edge).
Theorem 2.3. Gee
.
Proof.
Theorem 2.4. .
Proof.
2.3 (spanning tree) Gspanning subgraphG
(spaning tree).
Corollary 2.4.1. Gconnected graphGcennected spanning
subgraph.
Proof. HGconnected spanning subgraph.
Hacyclic .H,
임의의 정점 u, vu, vu, v
16
.connected spanning subgraph
.Hconnected spaning graphacyclic
.
Corollary 2.4.2. 있으ϵv1
Proof.
Theorem 2.5. G리를 TeT
GT+e유일.
2.4 (an edge cut) [S, S] : S, SV,정점각각 S,S
[S, S].
An edge cut of G:S적절V부분 ,¯
S=
V/S[S, ¯
S]G(an edge cut of G).
Bond : G(bond) .
¯
H(G) : HG부분 ¯
H(G)GE(H).
cotree :G,T¯
TGcotree
.
Theorem 2.6. TG,eT
.
cotree ¯
TG.
¯
T+eG 유일
Proof.
2.2.1
G
.임은 각각
.
17
2.2.2
(a)ee는다.
ee정점 a,b
.ea,be유일로로
.
(b) e.e
.
.
2.2.3
2.2.2(a)
2.2.2(b)
.Theorem2.4
.
2.2.4
maximal forst : GG
있음을
(a) 리를 . forestF
component.FHH리를
.
(b): 2.2.5.
2.2.5
component iϵi,정점vi Corollary2.4.2
ϵivi1.
ϵvω.vω
ϵv+ω.
2.2.6
(a) : ,.
정점.corollary 1.1
18
각각component정점
. (b) :
2.2.7
2.2.8
2.2.9
2.3 Cut Vertexes
2.5 (cut vertex) E부분정점 v 유일
G[E1],G[E2]있을정점 v정점(a cut vertex).
Gloopnontrivial,ω(Gv)> ω(G)정점 v
.
Theorem 2.7. Gd(v)>1v정점.
Proof.
Corollary 2.7.1. nontrivial,loopless 정점
.
Proof.
week5
Theorem 2.8. TGeT
G.T+e유일.
Proof. ψG(e) = xy,유일
ex, y 유일다는
유일임이 유일
.
19
2.4 Cayley’s Formula
2.6 (contract) Ge다는 e
정점.결과
G·e.
ν(G·e) = ν(G·e)1
ε(G·e) = ε(G·e)1
ω(G·e) = ω(G)
TT·e.
Gτ(G).
Theorem 2.9. 2.8 G 임의의 eτ(G) = τ(Ge) +
τ(G·e).
Proof. Ge함하Ge
.τ(Ge)Ge함하
.e함하G 임의의 TG·e
T·e.()τ(G·e)G
e함하..
Fortunately, and rather surprisingly, there is a closed formula for T(G)
which expresses T(G) as a determinant; we shall present this result in chapter
12.
Theorem 2.10. Cayleysf olmula :τ(Kn) = nn2
Proof. Kn정점 N={1,2, ..., n}.nn2N
n21.Kn
spanning tree1:1응을 .Knspanning tree
Tt1, t2, ..., tn2.N
,s1T1정점.s1t1정점.
s1TTs11정점 s2
리를 tn2정점반복.반복n2
1P r¨uf er sequences.
20
반복.spanning tree열에 .spanning
tree이자. sequence P 1n 작은
P .P. P
반복.n.
.nn2nn2
.
2.5 THE CONNECfOR PROBLEM
()
21
3 Connectivity
3.1 Connectivity
3.1 (Connectivity) Connectivity
A vertex cut : GVV부분 V정점
(A vertex cut) .
k-vertex cut : k정점 .(complete graph)
정점 지지 는다.
정점
는다.
connectivity κ(G) : G kvertexcutkκ(G)
.Gtrivialκ(G) = 0
.
kconnected :κ(G)kGkconnected.
nontrivial connected graph1connected.
3.2 (Edge connectivity) Edge connectivity
k-edge cut : k(edge cut).
Edge connectivity κ(G) : nontrivial Gk-edge cut EGE
.kedgecutGkκ(G)
.Gtrivial,κ(G)=0.
κ(G)kGk-edge-connected.
Gκ(G) = 1nontrivial connected
1-edge-connected.
Theorem 3.1.
3.1.1
(a) Show that if G is k-edge-connected, with k > 0, and if E’ is a set of k.
edges of G, then w(GE)<2
22
ω(G)=1
case 1) k(G)> k ω(GE) = 1
case 2) k(G) = kω(GE) = 2
ω(GE)2
(b) .For k > 0, find a k -connected graph G and a set V’ of kvertices of
G such that ω(GV)>2.
양에 정점정점
3.1.2
Show that if G -is k-edge-connected,.then ϵ > kv/2.
Theoream 3.1kδk×v2ϵ
3.1.3
(a) :
case 1) δ=v1
csae 2) δ=v2
(b) :
3.1.4
(b) : 정점
3.1.5
3.2 BLOCKS
3.3 (Blocks) Block : 정점block
.정점2-connected.
.(
다는.)
Theorem 3.2.
23
4 Euler Tours and Hamilton Cycles
4.1 Euler Tours
4.1 (Euler Tours) Euler7Konigsberg 리를 을을
음을
Euler trail : trail
tour : (closed) walk
Euler tour : tour
eulerian: Euler tour
Theorem 4.1. 정점지지eu-
lerian.
Proof.
4.2 HAMILTON CYCLES
HamiltonGraves.
4.2 (Hamilton cycle) hmm..
Hamilton path : 정점함한 path
Hamilton cycles : 정점함한 cycle
24
5 Matchings
5.1 Matchings
5.1 (Matching) E부분 MlinkG
G(matching).
MM(be matched under M).
saturated : M정점 vv(be Saturated)
,M정점 v,vM-saturated (be M-
saturated) .M-unsaturated.
정점M-saturated , M(perfect).
M-alternating path : E/MMpath
M-augmenting path : M-unsaturatedM-alternating path
Theorem 5.1. MGM-argumenting path
는다 .
Proof.
5.1.1
(a) : (b) : K2n:
n
Y
k=1
(2k1)
Kn,n =n!
5.1.2
case 1: V퍼펙. case 2: V
정점
5.1.3
5.1.4
5.1.5
25